题目描述
1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩。瑞恩被关押在一个迷宫里,迷宫地形复杂,但幸好麦克得到了迷宫的地形图。迷宫的外形是一个长方形,其南北方向被划分为 nnn 行,东西方向被划分为 mmm 列, 于是整个迷宫被划分为 n×m n \times m n×m 个单元。每一个单元的位置可用一个有序数对 (单元的行号, 单元的列号) 来表示。南北或东西方向相邻的 222 个单元之间可能互通,也可能有一扇锁着的门,或者是一堵不可逾越的墙。迷宫中有一些单元存放着钥匙,并且所有的门被分成 ppp 类, 打开同一类的门的钥匙相同,不同类门的钥匙不同。
大兵瑞恩被关押在迷宫的东南角,即 (n,m)(n,m)(n,m) 单元里,并已经昏迷。迷宫只有一个入口, 在西北角。也就是说,麦克可以直接进入 (1,1)(1,1)(1,1) 单元。另外,麦克从一个单元移动到另一个 相邻单元的时间为 111,拿取所在单元的钥匙的时间以及用钥匙开门的时间可忽略不计。
试设计一个算法,帮助麦克以最快的方式到达瑞恩所在单元,营救大兵瑞恩。
输入格式
第一行有三个整数,分别表示 n,mn , m n,m, 的值。
第二行是一个整数kkk,表示迷宫中门和墙的总数。
第 i+2i+2i+2 行 (1≤i≤k)(1 \leq i \leq k )(1≤i≤k),有 555 个整数,依次为 xi1,yi1,xi2,yi2,gix _{i1},y_{i1},x_{i2},y_{i2},g_ix​i1​​,y​i1​​,x​i2​​,y​i2​​,g​i​​ :当 gi≥1g_i \geq1g​i​​≥1 时,表示 (xi1,yi1)(x_{i1},y_{i1})(x​i1​​,y​i1​​) 单元与 (xi2,yi2)(x_{i2},y_{i2})(x​i2​​,y​i2​​) 单元之间有一扇第 gig_ig​i​​ 类的门,当 gi=0g_i = 0 g​i​​=0 时, 表示 (xi1,yi1)(x_{i1},y_{i1})(x​i1​​,y​i1​​) 单元与 (xi2,yi2)(x_{i2},y_{i2})(x​i2​​,y​i2​​) 单元之间有一堵不可逾越的墙。
第 k+3k+3k+3 行是一个整数 sss,表示迷宫中存放的钥匙总数。
第 k+3+jk+3+jk+3+j 行 (1≤j≤s)(1 \leq j \leq s)(1≤j≤s) ,有 333 个整数,依次为 xi1,yi1,qix_{i1},y_{i1},q_ix​i1​​,y​i1​​,q​i​​,表示第 jjj 把钥匙存放在 (xi1,yi1)(x_{i1},y_{i1})(x​i1​​,y​i1​​) 单元里,并且第 jjj 把钥匙是用来开启第 qiq_iq​i​​ 类门。
输入数据中同一行各相邻整数之间用一个空格分隔。
输出格式
输出麦克营救到大兵瑞恩的最短时间。如果问题无解,则输出 −1-1−1。
样例
样例输入
4 4 9 9 1 2 1 3 2 1 2 2 2 0 2 1 2 2 0 2 1 3 1 0 2 3 3 3 0 2 4 3 4 1 3 2 3 3 0 3 3 4 3 0 4 3 4 4 0 2 2 1 2 4 2 1
样例输出
14
数据范围与提示
  • ∣xi1−xi2∣+∣yi1−yi2∣=1,0≤gi≤p|x_{i1}-x_{i2}|+|y_{i1}-y_{i2}|=1, 0 \leq g_i \leq p∣x​i1​​−x​i2​​∣+∣y​i1​​−y​i2​​∣=1,0≤g​i​​≤p
  • 1≤qi≤p1\leq q_i \leq p1≤q​i​​≤p
  • n,m,p≤10, k<150n,m,p \leq 10,\ k < 150n,m,p≤10, k<150
直接根据题目状压spfa即可 这个建图很关键 因为是一个网格图 所以没有必要建邻接表来存图我设f[i][j][s]表示我现在有s的钥匙 然后我现在处于i,j这个位置时 我需要的最少步数然后spfa即可 另外这个门应该是正反的 比如我(3,2)->(3,3)不可行 那么反向我也是不可行的

 

分类: spfa

elijahqi

辣鸡蒟蒻一枚qwq 欢迎加qq qwq 2922945330

发表评论